If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10v^2-31v+24=0
a = 10; b = -31; c = +24;
Δ = b2-4ac
Δ = -312-4·10·24
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-1}{2*10}=\frac{30}{20} =1+1/2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+1}{2*10}=\frac{32}{20} =1+3/5 $
| 50/x+12=2 | | 3y+17=-+3 | | 17x-78=0 | | -8(x+1)=-24 | | -5/x-5/2x=2 | | 2x-3=45-2x | | -r+8=-(-3r+4) | | 3x^2+27x-61=0 | | x+2/6=-4 | | 4r+12=-8 | | 4m-8+5m+8=45 | | 9x/7+13/24=-1/7 | | 6x-12=24-12x | | 5^2x-6(5^x)+5=0 | | 11-3n=8(6n-5) | | 7x-(2x-9)=49 | | 5t-56=3t | | r/4+-12=4 | | 3(3x-2)=7+9x-12 | | 4.5=7.2/x | | 1/3X3+1/4=5/6x-1 | | 6x-1+5x=-12 | | 7(r-1)+3r=-18-r | | 2x+9=17x-6 | | 7x+2=3x−8 | | 8(4m-1)=28-4m | | 3w=6w-42 | | 2/3(3x+2)=x | | x+5=6x+5 | | -5x-8+x=-4 | | 7x+12=110 | | 7(c+3)=63 |